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XX. TRUSS ELEMENT 
 
XX.1 INTRODUTION 
Plane truss structure is a stable structure on the basis of a triangle, as shown in Fig.XX.1.1. The end 
of a member is pin junction which does not transmit a moment. As for the truss members that 
constitute plane truss structure, only axial forces act, bending moments and shear forces do not 
apply. In addition, middle loads will not act on the truss members. 
 

 
Figure XX.1.1 Plane truss structure 

 
The characteristics of the truss element can be summarized as follows: 
 
1) A truss element is a slender member (length is much larger than the cross-section). 
2) It is a two-force member i.e. it can only support an axial load and cannot support a bending load. 

Members are joined by pins (no translation at the constrained node, but free to rotate in any 
direction). 

3) The cross-sectional dimensions and elastic properties of each member are constant along its 
length. 

4) The element may interconnect in a 2-D or 3-D configuration in space. 
 
The element is mechanically equivalent to a spring, since it has no stiffness against applied loads 
except those acting along the axis of the member 
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XX.2 LOCAL AND GLOBAL COODINATES 
 
XX.2.1 Relationship between Local and Global Displacements 
We start by looking at the truss element shown in Figure 2.1. This element attaches to two nodes, i 
and j. In the figure we are showing two coordinate systems. One is a one dimensional coordinate 
system that aligns with the length of the element. We will call this the local coordinate system. The 
other is a two dimensional coordinate system that does not align with the element. We will call this 
the global coordinate system. The [ x, y ] coordinates are the local coordinates for the element and 
[ X, Y ] are the global coordinates. 
We can convert the displacements shown in the local coordinate system by looking at the following 
figure. uik, vik, ujk and vjk represent displacements in the local coordinate system and Uik, Vik, Ujk and 
Vjk represent displacements in the [ X, Y ] (global) coordinate system. 
 
 Local coordinate system [ x, y ] 
  Nodal displacement of member k in the x direction：uik，ujk 
  Nodal displacement of member k in the y direction：vik，vjk 

  Nodal force of member k in the x direction：pik，pjk 
  Nodal force of member k in the y direction：qik，qjk 
 
 Global coordinate system [ X, Y ] 
  Nodal displacement of member k in the X direction：Uik，Ujk 
  Nodal displacement of member k in the Y direction：Vik，Vjk 

  Nodal force of member k in the X direction：Pik，Pjk 
  Nodal force of member k in the Y direction：Qik，Qjk 
 

 
Figure XX.2.1.1 Nodal displacements and nodal forces of Local and Global coordinate systems 

 

(a) Nodal displacements of Local coordinate system    (b) Nodal displacements of Local coordinate system 
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Figure XX.2.1.2 Nodal displacements and nodal forces of Local and Global coordinate systems 

 
Let us consider the relation between the nodal displacements Uik, Vik in the global coordinate system 
and the nodal displacements uik, vik in the local coordinate system. From a geometric relation as 
shown in Fig.XX.2.1.2, the governing equations relating the two coordinate values (Uik, Vik, uik, and 
vik) are given as 

cos sin

sin cos
ik ik k ik k

ik ik k ik k

u U V

v U V

θ θ
θ θ

= +
= − +

  (XX.2.1.1) 

Similarly, for the nodal displacements of Node j, we can obtain the following relations.  

cos sin

sin cos
jk jk k jk k

jk jk k jk k

u U V

v U V

θ θ
θ θ

= +

= − +
  (XX.2.1.2) 

In matrix form 

cos sin 0 0

sin cos 0 0

0 0 cos sin

0 0 sin cos

ik ikk k

ik ikk k

jk jkk k

jk jkk k

u U

v V

u U

v V

θ θ
θ θ

θ θ
θ θ

    
    −    =   

    
    −    

 (XX.2.1.3) 

Similarly, for the nodal forces, we also can obtain the following relations.  

cos sin

sin cos
ik ik k ik k

ik ik k ik k

p P Q

q P Q

θ θ
θ θ

= +
= − +

  (XX.2.1.4) 

cos sin

sin cos
ik ik k ik k

ik ik k ik k

p P Q

q P Q

θ θ
θ θ

= +
= − +

  (XX.2.1.5) 

In matrix form 

cos sin 0 0

sin cos 0 0

0 0 cos sin

0 0 sin cos

ik ikk k

ik ikk k

jk jkk k

jk jkk k

p P

q Q

p P

q Q

θ θ
θ θ

θ θ
θ θ

    
    −    =   

    
    −    

 (XX.2.1.6) 

Accordingly, the relationship between the values in the global coordinate and the values in the local 
coordinate is expressed in the matrix form. 
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{ } [ ]{ }k k kp T P=   (XX.2.1.7) 

{ } [ ]{ }k k kd T D=   (XX.2.1.8) 

{ } , { } , { } , { }

ik ik ik ik

ik ik ik ik

k k k k
jk jk jk jk

jk jk jk jk

P p U u

Q q V v
P p D d

P p U u

Q q V v

       
       
       = = = =       
       
              

 (XX.2.1.9) 

cos sin 0 0

sin cos 0 0
[ ]

0 0 cos sin

0 0 sin cos

k k

k k
k

k k

k k

T

θ θ
θ θ

θ θ
θ θ

 
 − =
 
 
 

 (XX.2.1.10) 

in which [Tk] is the transformation matrix. {Dk}, { Pk} are nodal displacement and force vector in 
the global coordinate, and {dk}, { pk} are nodal displacement and force vector in the local 
coordinate. 
 
XX.3 FINEIT ELMENT EQUATION IN LOCAL COODINATE SYSTEM 
Now, we will derive the finite element equation in local coordinate system. Consider the truss 
element shown in Fig.XX.3.1.1, with nodes i and j, displacements vi, ui, uj and vj, and forces pik, qik, 
pjk and qjk. 

 
Figure XX.3.1.1   

 
XX.3.1 Strain-displacement relation: 
The strain-displacement relation in the truss element is calculated by interpolation of deflection 
values shared by nodes of the element. The relationship strain εk and deflection ek is given by 

' ( )k k k k k k
k

k k k

e eε − + −= = =l l l l

l l l
 (XX.3.1.1) 

in which kl  is a member length before deformation, and 'kl  is a member length after 
deformation, and ek is a elongation of the truss element. The strain εk is expressed by nodal 
displacements and the member length.  
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2 2

1 2 1jk ik jk ik jk ik

k k k

u u u u v v− − −   
= + + + −   

   l l l
 (XX.3.1.2) 

When the terms, jk ik

k

u u−
l

 and jk ik

k

v v−
l

 in above the equation are small enough, the above equation 

can be approximated as 

1 2 1 1 1jk ik jk ik jk ik
k

k k k

u u u u u u
ε

− − −
≈ + − ≅ + − =

l l l
 (XX.3.1.3) 

 
XX.3.2 Stress strain relation (constitutive equation) 
The stress strain relation of the truss element is adopt the hook’s law,  

k k kEσ ε=   (XX.3.2.1) 

where, Ek is a young’s modulus or modulus of elasticity.  
 
XX.3 Finite element equation in Local Coordinate System 
From the above relationship, an axial force, Nk, of the truss element is given by 

( ) ( )k k k k
k k k k k j i k j i

k k

E A E A
N E A e u u k u uε= = = − = −

l l
 (XX.3.3.1) 

where Ak is a cross-section area of the truss element, and kk is an axial stiffness of the truss element.  

k k
k

k

E A
k =

l
  (XX.3.3.2) 

As illustrated in Fig.XX.3.1.1, the applied forces pik, qik, pjk and qjk are expressed by the axial force, 
and the finite element equation in local coordinates is given as,  

cos ( )

sin 0

cos ( )

sin 0

ik k k k jk ik k ik k jk

ik k

jk k k k jk ik k ik k jk

jk k

p N N k u u k u k u

q N

p N N k u u k u k u

q N

θ
θ
θ
θ

= − ∆ ≈ − = − − = −

= − ∆ ≈
= ∆ ≈ = − = − +

= ∆ ≈

 (XX.3.3.3) 

in which the following equations are assumed in infinitesimal deformation theory. 

cos 1 , sin 0θ θ∆ ≈ ∆ ≈    

As a matrix form of Eq.(XX.3.3.3),  

{ } [ ]{ }k k kp k d=   (XX.3.3.4) 

1 0 1 0

0 0 0 0
[ ] ;

1 0 1 0

0 0 0 0

k k
k k k

k

E A
k k k

− 
  ⋅ = =
 −
 
 

l
 (XX.3.3.5) 

Here, Eq.(XX.3.3.4) is a finite element equation in local coordinate system, [ kk ] is a stiffness 
matrix of a truss element in local coordinates. This equation will be converted to global coordinate 
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system, which can be used to generate a global structural equation for the given structure. 
 
XX.4 FINEIT ELMENT EQUATION IN GLOBAL COODINATE SYSTEM 
Using the relationships between local and global deflections and forces, we can convert an element 
equation from a local coordinate system to a global system. Substituting Eqs.(XX.2.1.7) and 
(XX.2.1.8) into the element local equilibrium, Eq.(XX.3.3.4), we obtain  

[ ]{ } [ ][ ]{ }k k k k kT P k T D=   (XX.4.1.1) 

Multiplying both sides of this matrix equation by the inverse of the transformation matrix, that is, 
by [Tk]

-1, we obtain 
1{ } [ ] [ ][ ]{ }k k k k kP T k T D−=   (XX.4.1.2) 

For this and most cases, the transformation matrix [Tk]
T has the property of orthogonality. Therefore, 

the inverse is the same sa the transpose [Tk]
T.  

1[ ] [ ] T
k kT T− =   (XX.4.1.3) 

Finite element equation of the truss element in global coordinates is expressed as  

{ } [ ]{ }k k kP K D=   (XX.4.1.4) 

in which [ Kk ] is a stiffness matrix of a truss element in global coordinates. The stiffness matrix is 
expressed as 

[ ] [ ] [ ][ ]T
k k k kK T k T=    

cos sin 0 0 cos sin 0 01 0 1 0

sin cos 0 0 sin cos 0 00 0 0 0

0 0 cos sin 0 0 cos sin1 0 1 0

0 0 sin cos 0 0 sin cos0 0 0 0

T

k k k k

k k k kk k

k k k kk

k k k k

E A

θ θ θ θ
θ θ θ θ

θ θ θ θ
θ θ θ θ

−    
    − −⋅    =
    −
    − −    

l
 

2 2

2 2

2 2

2 2

cos sin cos cos sin cos

sin cos sin sin cos sin

cos sin cos cos sin cos

sin cos sin sin cos sin

k k k k k k

k k k k k kk k

k k k k k k k

k k k k k k

E A

θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ θ θ
θ θ θ θ θ θ

 − −
 − −⋅  =
 − −
 
− −  

l
 (XX.4.1.5) 

Each of its terms has a physical significance, representing the contribution of one of the 
displacements to one of the forces. The global system of equations is formed by combining the 
element stiffness matrices from each truss element in turn, so their computation is central to the 
method of matrix structural analysis. This matrix has several noteworthy characteristics: 
 The matrix is symmetric 
 Since there are 4 unknown displacements (DOFs), the matrix size is a 4 x 4. 
 The matrix represents the stiffness of a single element. 
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XX.5 ASSEMBLING THE STIFFNESS MATRICES 
The next step is to consider an assemblage of many truss elements connected by pin joints. Each 
element meeting at a joint, or node, will contribute an external force. To maintain static equilibrium, 
all element force contributions {Pk}at a given node must sum to the force that is externally applied 
at that node:  

{ } { } [ ]{ } [ ]{ }k k k
elem elem

P P K D K D= = =   (XX.5.1.1) 

Here, { P } is a external force, { D } is a displacement vector, and [ K ] is a overall, or “global” 
stiffness matrix. Each element stiffness matrix [ Kk ] is added to the appropriate location of the 
overall stiffness matrix [ K ] that relates all of the truss displacements and forces. This process is 
called “assembly“.  
Eq.(XX.5.1.1) is a simultaneous linear equations. Solving the Eq.(XX.5.1.1), the displacement 
vector can be calculated as 

1{ } [ ] { }D K P−=   (XX.5.1.2) 

 
XX.6 CALCULATION OF THE AXIAL FORCES OF TRUSS ELEMENT 
To evaluate an axial force of each member, the nodal displacements of each member are calculated 
based on the result of displacement vector in Eq.(XX.5.12). The elongation ek of truss member k is 
expressed with the nodal displacements of the global coordinate system. 

( ) ( )cos sin cos sin

cos sin cos sin

k jk ik

jk k jk k ik k ik k

k ik k ik k jk k jk

e u u

U V U V

U V U V

θ θ θ θ

θ θ θ θ

= −

= + − +

= − − + +

  

[ ]cos sin sin cos

ik

ik

k k k k
jk

jk

U

V

U

V

θ θ θ θ

 
 
 = − −  
 
  

 (XX.6.1.1) 

By using the nodal displacements, the axial force Nk of truss member k is expressed as 

[ ]cos sin sin cos

ik

ikk k k k
k k k k k k

jkk k

jk

U

VE A E A
N e

U

V

θ θ θ θ

 
 ⋅ ⋅  = = − −  
 
  

l l
 (XX.6.1.2) 

In general, substituting Eq.(XX.2.1.8) into Eq.(XX.3.3.4), the nodal force vector {pk} in the local 
coordinate is expressed as  

{ } [ ]{ } [ ][ ]{ }k k k k k kp k d k T D= =   (XX.3.3.4) 

cos sin 0 01 0 1 0

sin cos 0 00 0 0 0

0 0 cos sin1 0 1 0

0 0 sin cos0 0 0 0

ik ikk k

ik ikk kk k

jk jkk kk

jk jkk k

p U

q VE A
p U

q V

θ θ
θ θ

θ θ
θ θ

−     
      −⋅     =   

  −   
     −      

l
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cos sin cos sin

0 0 0 0

cos sin cos sin

0 0 0 0

ikk k k k

ikk k

jkk k k kk

jk

U

VE A
U

V

θ θ θ θ

θ θ θ θ

− −   
  ⋅   =  

 − −  
    

l
 (XX.3.3.4) 

in which the value of third row, pjk, of the vector {pk} corresponds to the axial force Nk. 
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XX.7 COMPUTAIONAL PROCEDURE 
XX.7.1 Geometry of the structure 
There are 3 nodes and 3 elements making up the truss structure. We are going to do a two 
dimensional analysis so each node is constrained to move in only the X or Y direction. We call 
these directions of motion degrees of freedom or dof for short. There are 3 nodes and 3 degrees of 
freedom (two degrees of freedom for each node). Nodal displacements are assumed to be D1, D2 
and D3 as shown in Fig.XX.7.1.1. Applied external forces are assumed to be P1, P2 and P3 
corresponding to D1, D2 and D3, respectively. 
 

 
Fig.XX.7.1.1 

 
We can locate each node by its coordinates. Table XX.7.1 shows the coordinates of the nodes in the 
problem we are solving. We can use these coordinates to determine the lengths and angles of the 
elements.  
 

Table XX.7.1.1 Coordinates of the nodes in the truss. 
Node X Y 

1 a a 
2 0 0 
3 a 0 

 
Table XX.7.1.2 Elements and Nodes they connect in the truss. 

Element From Node To Node Length Cosine Sine 
(a) 2 1 2 a 1/ 2  1/ 2  
(b) 2 3 a 0 1 
(c) 3 1 a 1 0 

 
Each element can be described as extending from one node to another. This also can be defined in 
Table XX.7.1.2. From these two tables we can derive the lengths of each element and the cosine and 
sine of their orientation. This is shown in the table below. 
Axial stiffness are assumed to be expressed as kk 

k k
k

k

E A
k

⋅=
l

   ;  k = a, b and c  (XX.7.1.1) 

in which Ek, Ak and kl  are the young’s modulus, the cross-section area and length of the member.  
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XX.7.2 Find the stiffness matrix for each element 
In the previous sections we developed the stiffness matrix for an element. 
 
(1) Element (a) 

θa = 45 deg., 2 21 1 1 1 1
sin , cos , sin , cos , sin cos

2 2 22 2
a a a a a aθ θ θ θ θ θ= = = = =  

2
a a

a
a

E A E A
k

a
= =

l
  

2 2

2 2

1 1 1

1 1 2

01 1 1 1 1 1 1 1

01 1 1 1 1 1 1 1

1 1 1 1 1 1 1 12 2

1 1 1 1 1 1 1 1

a a

a aa a

a a

a a

P U

Q Vk k

P U D

Q V D

− − − −        
        − − − −        = =     

   − − − −     
        − − − −        

 (XX.7.2.1) 

(2) Element (b) 

θb = 90 deg., 2 2sin 1 , cos 0 , sin 1 , cos 0 , sin cos 0b b b b b bθ θ θ θ θ θ= = = = =  

b b
b

b

E A E A
k

a
= =

l
  

3 3 3

3 3

1 1 1

1 1 2

0 0 0 0 0 0 0 0

00 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

b b

b b
b b

b b

b b

P U D

Q V
k k

P U D

Q V D

        
        − −        = =     

        
        − −        

 (XX.7.2.2) 

(3) Element (c) 

θc = 0 deg., 2 2sin 0 , cos 1 , sin 0 , cos 1 , sin cos 0c c c c c cθ θ θ θ θ θ= = = = =  

b b
b

b

E A E A
k

a
= =

l
  

2 2

2 2

3 3 3

3 3

1 0 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0

c c

c c
c c

c c

c c

P U

Q V
k k

P U D

Q V

− −        
        
        = =     

   − −     
                

 (XX.7.2.3) 

 
XX.7.3 Assembling the global stiffness matrices 
Since there are 3 displacements (or DOFs), D1 through D3, the matrix is 3 x 3. Now, we will place 
the individual matrix element from the element stiffness matrices into the global matrix according 
to their position of row and column members. 
 
(1) Element (a)  
The nodal forces, P1a and Q1a corresponding to D1 and D2 directions are expressed as 

1 1 22 2
a a

a

k k
P D D= +   (XX.7.3.1) 
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1 1 22 2
a a

a

k k
Q D D= +   (XX.7.3.2) 

In the matrix form, 

1 1

1 2

3

/ 2 / 2 0

/ 2 / 2 0

0 0 0 0

a a a

a a a

P k k D

Q k k D

D

     
    =    
         

  (XX.7.3.3) 

(2) Element (b) 
The nodal forces, P3b, P1b, and Q1a corresponding to D3, D1 and D2 directions are expressed as 

3 0bP =   (XX.7.3.4) 

1 0bP =   (XX.7.3.5) 

1 2b bQ k D=   (XX.7.3.6) 

In the matrix form, 

1 1

1 2

3 3

0 0 0

0 0

0 0 0

b

b b

b

P D

Q k D

P D

     
    =    
         

  (XX.7.3.7) 

(3) Element (c) 
The nodal force P3c corresponding to D3 direction is expressed as  

3 3c cP k D=   (XX.7.3.8) 

In the matrix form, 

1

2

3 3 3

0 0 0 0

0 0 0 0

0 0c

D

D

P k D

     
    =    
         

  (XX.7.3.9) 

Assembling all the terms for elements (a), (b) and (c), we get the complete matrix equation of the 
structure.  

1 1 1 1 2 1 2

2 1 1 1 2 2 1 2

3 3 3

0
2 2 2 2

2 2 2 2

a a a a
a b

a a a a
a b b b

c c

k k k k
P P P D D D D

k k k k
P Q Q D D k D D k D

P P k D

= + = + + = +

 = + = + + = + + 
 

= =

 (XX.7.3.10) 

In the matrix form,  

1 1

2 2

3 3

/ 2 / 2

/ 2 / 2
a a

a a b

c

P k k D

P k k k D

P k D

Ο    
    = + Ο    
    Ο Ο    

 (XX.7.3.11) 

In other word, adding the Eqs.(XX.7.3.3), (XX.7.3.7) and (XX.7.3.9), we get 
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1 1 1 1

2 1 1 2

3 3 3 3

0 / 2 / 2 0

0 / 2 / 2 0

0 0 0

a b a a

a b a a b

b c c

P P P k k D

P Q Q k k k D

P P P k D

           
          = + + = +          
                     

 (XX.7.3.12) 

 
XX.7.4 Solving the matrix equation 
Writing the matrix equation into algebraic linear equations, we get 

3 3ck D P=   (XX.7.4.1) 

1 1

2 2

/ 2 / 2

/ 2 / 2
a a

a a b

k k D P

k k k D P

    
=    +     

  (XX.7.4.2) 

Solving Eqs.(XX.7.4.1) and (XX.7.4.2), we get 

3 3 / cD P k=   (XX.7.4.3) 

1 2
1 1 1

2 2 2
1 2

1 2 1 1 2 1

2 2 2
1 1 1 1

2 2

a a
b

b a b b a b

a aa b

b b b b

k k P Pk k k kD P P k k k

D P Pk kk k
P P

k k k k

     + − + − + −             = = =        
         −− − +         

 (XX.7.4.4) 

Accordingly, the displacements of the structure are 

3
1 1 2 2 1 2 3

3

1 2 1 1 1
, ,

b a b b b

P
D P P D P P D

k k k k k k

 
= + − = − + = 
 

 (XX.7.4.5) 

 
XX.7.5 Axial force of each element 
The axial force of each truss element is calculated by Eq.(XX.6.1.2). 
 
(1) Element (a)  

( )1 2
1

2

0

01 1 1 1

2 2 2 2 2
a

a a

k
N k D D

D

D

 
 

  = − − = +  
  

  

 

1 2 1 2 1 1

1 2 1 1 1 2
2

2 2
a a

b a b b b a

k k
P P P P P P

k k k k k k

  
= + − − + = =   

  
 (XX.7.5.1) 

(2) Element (b) 

[ ]
3

2 1 2 2 1
1

2

0 1 1
0 1 0 1b b b b

b b

D

N k k D k P P P P
D k k

D

 
    = − = = − + = −   

  
  

 (XX.7.5.2) 

(3) Element (c)  
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[ ] 3
3 3

3

0

0
1 0 1 0

0

c c c c
c

P
N k k D k P

D k

 
 
 = − = = × = 
 
  

 (XX.7.5.3) 

 
XX.7.6 Comparison  
It disputes about comparison between axial forces of truss members based on static equilibrium 
equation, and the axial forces calculated from Finite Element analysis. 
 

 
 
As shown in above figure, the reactant forces H2, V2 and V3 are calculated based on static 
equilibrium equation as  

2 1 3

2 3 2

(2) 3 2 1

0 :

0 : 0

0 :

X H P P

Y V V P

M V a P a P a

Σ = = +
Σ = + + =
Σ = + =

  (XX.7.6.1) 

in which the 3rd equation in Eq.(XX.7.6.1) expresses the equilibrium of moment at Node 2. From 
the result of above equations, we can get the reactant forces H2, V2 and V3.  

3 1 2

2 3 2 1 2 2 1

2 1 3

V P P

V V P P P P P

H P P

= −
= − − = − + − = −
= +

  (XX.7.6.2) 

From the result of above equations, the axial force of each member is calculated as 

3 3 1 2

3

2 1 1

0

1
sin 45 0 0 2

2

b b

c

o
a a a

N V N V P P

N P

N V N P N P

+ = → = − = − +
=

+ = → − = → =

 (XX.7.6.3) 

It is confirmed that the axial force of each truss member based on the static equilibrium equation is 
in agreement with the axial force calculated by Finite Element analysis. 
  

1 

3 2 

X 

Y 

(c) 

(b) (a) 

V
2
 

P
1
 

P
2
 

k
c
 

k
a
 k

b
 a 

45
0
 P

3
 

H
2
 

V
3
 

a 
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[ Example BB.1] 
Compute global stiffness matrix of the truss structure shown in Fig.BB.1. There are 4 nodes and 4 
elements making up the structure. The young’s modulus E and the sectional area A of each truss 
member are constant. Two dimensional analysis is considered so each node is constrained to move 
in only the X or Y direction. There are 4 degrees of freedom. Nodal displacements are assumed to 
be D1, D2, D3 and D4 as shown in Fig.BB.1. Applied external forces are assumed to be P1, P2, P3 
and P4 corresponding to D1, D2, D3 and D4, respectively. As loading condition, external load P act 
downward at Node 3. 
 

 
BB.1 Truss structure 

 
 
(1) Stiffness matrix for each element 
(a) Element (a) [ Node 1 → Node 2 ] 

θa = 0 deg., sin 0 , cos 1 , sin cos 0a a a aθ θ θ θ= = =  ,  
2

a a
a

a

E A E A
k

a
= =

l
 

1 1

1 1

2 2 1

2 2 2

01 0 1 0 1 0 1 0

00 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

a a

a a
a a

a a

a a

P U

Q V
k k

P U D

Q V D

− −        
        
        = =     

   − −     
                

 (EE.1) 

2 1 2, 0a a aP k D Q= =   (EE.2) 

(b) Element (b) [ Node 3 → Node 2 ] 

θb = 90 deg., sin 1 , cos 0 , sin cos 0b b b bθ θ θ θ= = =  ,  b b
b

b

E A E A
k

a
= =

l
 

3 3 3

3 3 4

2 2 1

2 2 2

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

b b

b b
b b

b b

b b

P U D

Q V D
k k

P U D

Q V D

        
        − −        = =     

        
        − −        

 (EE.3) 

3 3 2 4 2 2 2 40 , , 0 ,b b b b b b b bP Q k D k D P Q k D k D= = − + = = −  (EE.4) 

(c) Element (c) [ Node 4 → Node 3 ] 

a 

a 

1 2 

3 4 

P 

X 

Y 

D
4
 

D
3
 

D
1
 

D
2
 

(a) 

(b) 

(d) 

(c) 
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θc = 0 deg., sin 0 , cos 1 , sin cos 0c c c cθ θ θ θ= = =  ,  c c
c

c

E A E A
k

a
= =

l
 

4 4

4 4

3 3 3

3 3 4

01 0 1 0 1 0 1 0

00 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

c c

c c
c c

c c

c c

P U

Q V
k k

P U D

Q V D

− −        
        
        = =     

   − −     
                

 (EE.5) 

3 3 3, 0c c cP k D Q= =   (EE.6) 

(d) Element (d) 

θc = 45 deg., 
1 1 1

sin , cos , sin cos
22 2

d d d dθ θ θ θ= = =  ,  
2

d d
d

d

E A E A
k

a
= =

l
 

4 4

4 4

2 2 1

2 2 2

01 1 1 1 1 1 1 1

01 1 1 1 1 1 1 1

1 1 1 1 1 1 1 12 2

1 1 1 1 1 1 1 1

d d

d dd d

d d

d d

P U

Q Vk k

P U D

Q V D

− − − −        
        − − − −        = =     

   − − − −     
        − − − −        

 (EE.7) 

2 1 2 2 1 2,
2 2 2 2
d d d d

d d

k k k k
P D D Q D D= + = +  (EE.8) 

 
(2) Global stiffness matrices 
Since there are 4 displacements (or DOF), D1 through D4, the matrix is 4x4. Assembling all the 
terms for elements (a), (b) , (c) and (d), we get the complete matrix equation of the structure. From 
the relation between extarnal forces and nodal forces, the equiliburium equations of forces are 
expressed as 

1 2 2 2

2 2 2 2

3 3 3

4 3 3

a b d

a b d

b c

b c

P P P P

P Q Q Q

P P P

P Q Q

= + +
= + +
= +
= +

  (EE.9) 

Substituting Eqs.(EE.2), (EE.4), (EE.6) and (EE.8) into above equation, we get 

1 1 1 2 1 2

2 2 4 1 2 1 2 4

3 3 3

4 2 4 2 4

0
2 2 2 2

0
2 2 2 2

0

0

d d d d
a a

d d d d
b b b b

c c

b b b b

k k k k
P k D D D k D D

k k k k
P k D k D D D D k D k D

P k D k D

P k D k D k D k D

 = + + + = + + 
 

 = + − + + = + + − 
 

= + =
= − + + = − +

 (EE.10) 

In a matrix form 
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2 2 21 1

2 2 22 2

3 33 3

3 34 4

0 0
2 2

0
2 2
0 0 0

0 0

d d
a

a b d

a b d d d
b b

b c

c
b c

b b

k k
kP P PP D

Q Q Q k kP D
k k

P PP D
kQ QP D

k k

 + + +    
     + +      + −= =      +      

     +      
 − 

 (EE.11) 

Considering the conditions of external forces ( P1 = P2 = P3 = 0 and P4 = −P),  

1

2

3

4

0 0
02 2
0

0
2 2 0
0 0 0

0 0

d d
a

d d
b b

c

b b

k k
k D

k k D
k k

D
k D P

k k

 +     
     

    + − =    
    
   −    

 − 

 (EE.12) 

 


