Truss Elements Formulation

XX. TRUSSELEMENT

XX.1INTRODUTION

Plane truss structure is a stable structure obadlses of a triangle, as shown in Fig.XX.1.1. Thd en
of a member is pin junction which does not transaiinoment. As for the truss members that
constitute plane truss structure, only axial forae§ bending moments and shear forces do not
apply. In addition, middle loads will not act orettruss members.

fX

Figure XX.1.1 Plane truss structure
The characteristics of the truss element can barsuined as follows:

1) Atruss element is a slender member (length is nhugjer than the cross-section).

2) lItis a two-force membaere. it can only support an axial load and cannot supgpdending load.
Members are joined by pins (no translation at thestrained node, but free to rotate in any
direction).

3) The cross-sectional dimensions and elastic pragsedi each member are constant along its
length.

4) The element may interconnect in a 2-D or 3-D camfigjon in space.

The element is mechanically equivalent to a spramgge it has no stiffness against applied loads
except those acting along the axis of the member
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XX.2LOCAL AND GLOBAL COODINATES

XX.2.1 Relationship between Local and Global Displacements

We start by looking at the truss element showniguifeé 2.1. This element attaches to two nodes,

andj. In the figure we are showing two coordinate systeOne is a one dimensional coordinate
system that aligns with the length of the elem#. will call this the local coordinate system. The
other is a two dimensional coordinate system tbhascdot align with the element. We will call this

the global coordinate system. Theg, [y ] coordinates are the local coordinates for the et¢rard

[ X, Y] are the global coordinates.

We can convert the displacements shown in the lomaddinate system by looking at the following

figure. ui, Vi, Ujx andvjk represent displacements in the local coordinaggesy andJi, Vik, Ujx and

Vi« represent displacements in th¥, [Y ] (global) coordinate system.

Local coordinate systenx[y ]
Nodal displacement of memblem thex direction: Ui, U
Nodal displacement of memblem they direction: vi,, Vi
Nodal force of membek in thex direction: pi, Pjk
Nodal force of membedcin they direction: gk, Qi

Global coordinate systeni] Y|
Nodal displacement of memblein theX direction: Uik, Ujk
Nodal displacement of memblein theY direction: Vi, Vi«
Nodal force of membék in theX direction: Py, Pj
Nodal force of membdqin theY direction: Qi, Qjk

y Y V'k « y Y /V'kx
\g@/]% \/I(\Uk \?uvé/*
I - — X & b > X

! ‘_> Uik

(a) Nodal displacements of Local coordinate system(b) Nodal displacements of Local coordinate exyst

Y /ijk

y Y > Y X
TQik ? X qik )(v
I:)ik qik
0 ij ! 0
K »X X > X
(a) Nodal forces of Local coordinate system (b) Nodal forces of Local coordinate system

Figure XX.2.1.1 Nodal displacements and nodal femmielocal and Global coordinate systems
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Figure XX.2.1.2 Nodal displacements and nodal el ocal and Global coordinate systems

V.sin6,

Let us consider the relation between the nodalatgpnentdJiy, Vik in the global coordinate system
and the nodal displacemenig, vik in the local coordinate system. From a geometriation as
shown in Fig.XX.2.1.2, the governing equationstretathe two coordinate valuesif, Vi, Ui, and
Vi) are given as

e = Ui C,Osek + Vi S, (XX.2.1.1)
v, =-U, sing, +V, cod,

Similarly, for the nodal displacements of Ngd&e can obtain the following relations.
u, = U, cosg +V, sing,

v, =-U,sing +V, cogj, (XX.2.1.2)
In matrix form
Uy [ cosf,  sing, 0 0 (U,
Vi | _ | —sing, cog], 0 0 ||V,
u | 0 0 cof sid ||V, (XX.2.1.3)
Vi 0 0 -—sing cog ||V
Similarly, for the nodal forces, we also can obthia following relations.
= P, cosg, +Q, sirg,
(I:: = -PI; siné’kk +§: coszsvkk (XX.2.1.4)
= P, cosg, +Q, sirg,
2:=-Fl?isin6’:+(§: coszsvkk (XX.2.1.5)
In matrix form
P.| [ cosg —simg 0 0[P,
Gk -sing, cod, 0 0 ||Q,
Pik ) 0 0 co, sif, || P, (XX.2.1.6)
Q%) | O 0 -sing cod ||Q

Accordingly, the relationship between the valuethm global coordinate and the values in the local
coordinate is expressed in the matrix form.
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{pd =[TH R (XX.2.1.7)
{d} =[TH{ O, (XX.2.1.8)
I:i)k plk Uik uik
Qlk qik \/ik Vik
{R} = AR = { D =9, ¢{ H = XX.2.1.9
k} IDjk } ka k U]k k qu ( )
ij qjk ij ij
[ cosf,  sing, 0 0
[T] = “SnG cod - 0 O (XX.2.1.10)
0 0 co¥, sirg,
0 0 sing, cod,

in which [Ty] is the transformation matrix.0y}, { P} are nodal displacement and force vector in
the global coordinate, anddd, {p are nodal displacement and force vector in thealo
coordinate.

XX.3 FINEIT ELMENT EQUATION IN LOCAL COODINATE SYSTEM
Now, we will derive the finite element equation lotal coordinate system. Consider the truss
element shown in Fig.XX.3.1.1, with nodeandj, displacements;, u;, u; andyv;, and forcepix, Gk,

Pik andq,-k.

i T
Pik AB pjk_"-(l}/v Ne
— O —_ _ !
N« | V.
k| Y :
il w g
. I .
[ : . |
!—': Ui l, Uy
| N

i
Figure XX.3.1.1

XX.3.1 Strain-displacement relation:
The strain-displacement relation in the truss etgnie calculated by interpolation of deflection
values shared by nodes of the element. The refdtiprstraire, and deflectiorg is given by

_bh - _(Lte) -l _ & (XX.3.1.1)

‘ gk ﬁk gk

in which ¢, is a member length before deformation, and is a member length after
deformation, ande is a elongation of the truss element. The stegis expressed by nodal
displacements and the member length.

2 2 2 2
£ = \/(fk"'ujk_uik) + (Vi =)™ — 4, :\/(1+ujk_uk] +(Vik_vik] 1

U £y
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2 2
SN B e T i Y (TS T S (XX.3.1.2)
b b b

u., —u V., —V. . . .
When the terms; ‘kﬁ ® and Jk/ “ in above the equation are small enough, the abquation
“k "k
can be approximated as

u,—u u,—u u, —u
g = |1+2- X —1p1+ 2% - = K (XX.3.1.3)
k gk gk
XX.3.2 Stress strain relation (constitutive equation)
The stress strain relation of the truss elemeatiapt the hook’s law,
o, = & (XX.3.2.1)
where,Ex is a young’s modulus or modulus of elasticity.
XX.3 Finite element equation in Local Coordinate System
From the above relationship, an axial fordg,of the truss element is given by
N, =B A& = EZA’( § = EZA’( (U —u) =k (U, —u) (XX.3.3.1)
k k
whereA is a cross-section area of the truss elementkaischn axial stiffness of the truss element.
K = E;A* (XX.3.3.2)
k

As illustrated in Fig.XX.3.1.1, the applied forgas gk, pjx andgjkx are expressed by the axial force,
and the finite element equation in local coordisasegiven as,

P = —N,cosAd = —=N, = -k U, -u, )=k u - Kk u,
g, = - N,sinA8 = 0
P = N,cosAd N,
gy = NgsinAg = 0

0

(XX.3.3.3)

0

Ky (ij_uik): —k Uy + kK Uy,

in which the following equations are assumed imitésimal deformation theory.
CosAfd = 1, si\@ = (
As a matrix form of Eq.(XX.3.3.3),

{pd =[ kK d (XX.3.3.4)
1 0 -10

[kJ] = Kk 00009 k= E A (XX.3.3.5)
-1 0 1 0 l,
0 00O

Here, Eq.(XX.3.3.4) is a finite element equationlacal coordinate system, k] is a stiffness
matrix of a truss element in local coordinates.sTémuation will be converted to global coordinate
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system, which can be used to generate a globaltstal equation for the given structure.

XX.4 FINEIT ELMENT EQUATION IN GLOBAL COODINATE SYSTEM

Using the relationships between local and glob#edgons and forces, we can convert an element
equation from a local coordinate system to a glabhatem. Substituting Egs.(XX.2.1.7) and
(XX.2.1.8) into the element local equilibrium, E§X.3.3.4), we obtain

[THR =[ K[ T{ D, (XX.4.1.1)

Multiplying both sides of this matrix equation dyetinverse of the transformation matrix, that is,
by [T ™, we obtain

(R} =[TIT Kl T D (XX.4.1.2)

For this and most cases, the transformation mgEgX has the property of orthogonality. Therefore,
the inverse is the same sa the transpdge |

[T1 =[T]" (XX.4.1.3)
Finite element equation of the truss element ibgl@oordinates is expressed as
{R} =[ KJ{ D, (XX.4.1.4)

in which [Ky] is a stiffness matrix of a truss element in glotx@ordinates. The stiffness matrix is
expressed as

[K] =[TJTKI T

T

cosf, sing, 0 0 1 0 -1 0| co§ Sié, 0 0
_| —sing, cod, 0 O | EA|O O 0 O]f-sid cog 0 0
0 0 coy, sirg, /. |1-1.0 1 0 0 0 col, St
0 0 -sing, cod, 0 0 0 O 0 0 - siff, c&
cos g, sing, cos, - cd¥, - s cés
_ E.TA | sing, cog, SiAg, - sig, cd - siif, (XX.4.15)
l, -co§g, - sirg, co8, cdd, s cés T
-sing, co®y, - siRg, s, co§, S

Each of its terms has a physical significance, eggnting the contribution of one of the
displacements to one of the forces. The globalesysdf equations is formed by combining the
element stiffness matrices from each truss elenmetdrn, so their computation is central to the
method of matrix structural analysis. This matrastseveral noteworthy characteristics:

» The matrix is symmetric

» Since there are 4 unknown displacements (DOFs)nttex size is a 4 x 4.

» The matrix represents the stiffness of a singlmels.
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XX.5 ASSEMBLING THE STIFFNESS MATRICES

The next step is to consider an assemblage of rirasyg elements connected by pin joints. Each
element meeting at a joint, or node, will contrban external force. To maintain static equilibrium
all element force contributiond{}at a given node must sum to the fotleat is externally applied
at that node:

(B=2R =X K{ B EKI}D (XX.5.1.1)

Here, {P } is a external force, D } is a displacement vector, and][] is a overall, or “global”
stiffness matrix. Each element stiffness matri[] is added to the appropriate location of the
overall stiffness matrix K ] that relates all of the truss displacements fandes. This process is
called “assembly".

Eq.(XX.5.1.1) is a simultaneous linear equationslvig the Eq.(XX.5.1.1), the displacement
vector can be calculated as

{O =[KTP (XX.5.1.2)

XX.6 CALCULATION OF THE AXIAL FORCES OF TRUSS ELEMENT

To evaluate an axial force of each member, the Intidplacements of each member are calculated
based on the result of displacement vector in EX}%XL.2). The elongatior of truss membek is
expressed with the nodal displacements of the gaadinate system.

€ = Uy — Uy
:(Ujk cosf, + V,, sirﬁk) - (U, co$, +V, sif)
=-cosg U, — sig V, + cog U, + sif V,
Uik

V.

=[-cosf, -sirg, sig, co§,] U'k (XX.6.1.1)
jk

Vv

ik

By using the nodal displacements, the axial fddcef truss membek is expressed as

Uik
V.
N = e =B Ao —sig, sim, cog ]l (XX.6.1.2)
4, £y Uik
V.
jk

In general, substituting Eq.(XX.2.1.8) into Eq.(>83.4), the nodal force vectopg in the local
coordinate is expressed as

ipd =[ki{d ¥ K K B (XX.3.3.4)
Pi 1 0 -1 O] cosf, simg, 0 0 (U,
G| _ EA|O0 O 0 O0ff-sing codg 0 0 ||V,
Pl ¢ |10 1 0| O 0 co®, siM, ||U,
Qi 0 0 0 0 O 0 -sing cog ||V
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cosg, sing, - cos, - sif ||U;

0 0 0 0 ||V
= 55 . . “ (XX.3.3.4)
¢, |-cosf, ~—sirg ~ co$| sifl, | |U
0 0 0 0 ||Vi

in which the value of third rowgy, of the vector pi} corresponds to the axial forés.
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XX.7 COMPUTAIONAL PROCEDURE

XX.7.1 Geometry of the structure

There are 3 nodes and 3 elements making up the Buuscture. We are going to do a two
dimensional analysis so each node is constrainedae in only the X or Y direction. We call
these directions of motion degrees of freedondabrfor short. There are 3 nodes and 3 degrees of
freedom (two degrees of freedom for each node).aNdsplacements are assumed toDheD,

and D3 as shown in Fig.XX.7.1.1. Applied external forcae assumed to bB;, P, and P;
corresponding t®;, D, andDs, respectively.

$0: P
1 —p» D1 -
Pl
1) I )
K, K
D. P

b

Fig.XX.7.1.1

We can locate each node by its coordinates. TalBl@ X shows the coordinates of the nodes in the
problem we are solving. We can use these coordirtateletermine the lengths and angles of the

elements.

Table XX.7.1.1 Coordinates of the nodes in thestrus

Node X Y

1 a a

2 0 0

3 a 0

Table XX.7.1.2 Elements and Nodes they connediartruss.
Element From Node To Node Length Cosing Sine

(@) 2 1 J2a 142 142
(b) 2 a 0 1
(c) 3 1 a 1 0

Each element can be described as extending frormode to another. This also can be defined in
Table XX.7.1.2. From these two tables we can dehedengths of each element and the cosine and
sine of their orientation. This is shown in thel¢albelow.

Axial stiffness are assumed to be expressdg as

kk:EkD%

(XX.7.1.1)
fk

: k=a, bandc

in whichE, Axand 7, are the young’s modulus, the cross-section ardaesngth of the member.
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XX.7.2 Find the stiffness matrix for each element
In the previous sections we developed the stiffinessix for an element.

(1) Element (a)

0;,1:45deg.,sin6?a=i,cosﬂa=i , SIRG, == ,00%611:—1 , Sl C =1
2 2 2 2
« cEA __EA
a 0 \/Ea
P, 1 1 -1 -1(u,, 1 1 -1-1(0
1 1 -1 -1V 1 1 -1- 0
Q| _ k, 2| _ K (XX.7.2.1)
P  2|-1 -1 1 1|lu. [ 2|-1-1 1 1||p
Q. -1 -1 1 1|V, -1 -1 1 1||p,
(2) Element (b)
0, =90 deg.,sing, =1, cog), = 0,sihg, = 1,cd¥, = 0,sth chs=
_EA _EA
k, = =Z=0
4, a
P, 0 0 0 0], 0o 0 0 0|D,
0 1 0 -1}V 0O 1 0- 0
Qs =k, 3b =k, (XX.7.2.2)
P, 0 0 0 0]|u, o 0 0 0||D,
Q, 0 -1 0 1|[V, 0-10 1||D,
(3) Element (c)
0.=0deg.,sing. =0, cog,=1,sihd, = 0,cd¥.= 1,sh s
-5A _EA
% ¢, a
P, 1 0 -1 0](U, 1 0-1 0
O 0 0 OV 0O 0 O 0
Que =k, 1=k (XX.7.2.3)
P, -1 0 1 o|Ju, -1 0 1 q|D,
Q, 0 0 0 0]V 0 00 0

XX.7.3 Assembling the global stiffness matrices

Since there are 3 displacements (or DOBs)throughD3, the matrix is 3 x 3. Now, we will place
the individual matrix element from the elementfsgts matrices into the global matrix according
to their position of row and column members.

(1) Element (a)
The nodal forces?1, andQ1, corresponding t®; andD, directions are expressed as

= ﬁDl + ﬁDZ

XX.7.3.1
2T 5 ( )

R
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Q. = %Dl + k—zﬁ‘D2 (XX.7.3.2)
In the matrix form,
P. k./2 k,/2 0|[D,
Q.r = 1|k, /2 k,/2 0|yD, (XX.7.3.3)
0 0 0 0f|D,

(2) Element (b)

The nodal forcesRsp, P1n, andQia corresponding t®s, D; andD; directions are expressed as

P, =0 (XX.7.3.4)
P, =0 (XX.7.3.5)
Qp = kD, (XX.7.3.6)
In the matrix form,
P, 0 0 O0|[Db,
Q,¢ =10 k, 0<D, (XX.7.3.7)
P, 0 0 0||Db,
(3) Element (c)
The nodal forcés; corresponding t®; direction is expressed as
P, = kD, (XX.7.3.8)
In the matrix form,
0 0 0 0D,
0;=/0 0 0|yD, (XX.7.3.9)
Ps. 0 0 k;||D,

Assembling all the terms for elements (a), (b) &)dwe get the complete matrix equation of the
structure.
Pl = Pla+P1b = %Dl + %Dz +0 = %Dl-'- ﬁDz

P, =0Q,+Q = %Dl + %Dz + kD, = %Dﬁ (% + kbjD2 (XX.7.3.10)
P3 = Psc = chs

In the matrix form,
P k,/2 k,/2 O || D,

pl=|k/2 k/2+k O[D,

(XX.7.3.11)
R O O k] D,

In other word, adding the Eqgs.(XX.7.3.3), (XX.7)3and (XX.7.3.9), we get
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P, P, P, 0 k. /2 k. /2 0](D,
Pr=9Qur*+1Qur*+10 =1k /2 k,/2+k, 0[<D, (XX.7.3.12)
P 0 Pol Py 0 0 k. || D,

XX.7.4 Solving the matrix equation
Writing the matrix equation into algebraic lineguations, we get

k.D; =R (XX.7.4.1)

k/2 k/2 ](D) _[R

{kalz k /2+ kaDz} - {pz} (XX.7.4.2)

Solving Egs.(XX.7.4.1) and (XX.7.4.2), we get

D, = R/k (XX.7.4.3)
kv K 1,2 1 (sz 1

1oz 2 e R WTRTR

0. ki ko k|lR/T 1 1lle e

2 2 K, k, k. 1 2

Accordingly, the displacements of the structure are

1 2 1 1 1
Dlz(_-'-_]Pl__Pz, D,=——P+—P,, D,;= (XX.7.4.5)

k k) ok k K k,

XX.7.5 Axial force of each element
The axial force of each truss element is calculaielq.(XX.6.1.2).

(1) Element (a)

0
Sl 1 10k
Na—ka{ NCINE fz} D, \/_2(D1+D2)
D2
:%((é+aa—ég—éa+ég):j%k—azpﬁﬁpl (XX.7.5.1)
(2) Element (b)
D3
0 1.1
N, = k[0 -1 0 = kD, =k|-—P+=P,| = P,-P, XX.7.5.2
o o=k kb(kb kb] ( )
D2

(3) Element (c)
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0

0
N.=k[-1 0 1 ( ol = k. D, = kx-=2 =P, (XX.7.5.3)
3 C

0

XX.7.6 Comparison
It disputes about comparison between axial fordesuss members based on static equilibrium
equation, and the axial forces calculated fromtEiRlement analysis.

As shown in above figure, the reactant for¢¢s V., and V; are calculated based on static
equilibrium equation as

5X =0 :H,=PBR+P,
SY =0 :V,+V,+P,=0 (XX.7.6.1)

M, =0 V,a+ Pa=PRa

in which the & equation in Eq.(XX.7.6.1) expresses the equilibriof moment at Node 2. From
the result of above equations, we can get theartafidrceH,, V, andVs.

V; =R-FR,
V2 - _V3_P2:_Pl+ |32_|32:—|3l (XX762)
H,=P+P,

From the result of above equations, the axial fofoeach member is calculated as
N, +V; =0 - N, =-V, = -R+P,
N, = R, (XX.7.6.3)
N_sin4® +V, = 0 - iNa—Pl: 0- N =P

V2

It is confirmed that the axial force of each trassmber based on the static equilibrium equation is
in agreement with the axial force calculated byitEiklement analysis.
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[ Example BB.1]

Compute global stiffness matrix of the truss stitetshown in Fig.BB.1. There are 4 nodes and 4
elements making up the structure. The young’'s mad& and the sectional area A of each truss
member are constant. Two dimensional analysisnsidered so each node is constrained to move

in only the X or Y direction. There are 4 degreé$reedom. Nodal displacements are assume
be D;, D,, D3 andD4 as shown in Fig.BB.1. Applied external forces assumed to bBy, P,, P3

andP, corresponding t®1, D,, D3 andDy, respectively. As loading condition, external |dadct
downward at Node 3.

le a - b,
1 (@ 2
b

(b) a
D4

5[ o,

O——

d

BB.1 Truss structure

i to

(1) Stiffness matrix for each element
(a) Element (a) [ Node 1 — Node 2]

. . E.A _ EA
0a=0deg.,singd, =0, cog, = 1,sid, cdl = , k =—=2=2=
a g B, /. a
B. 1 0 -1 0|(U, 1 0-1 0
0O 0 0 0|V 0O 0 O 0
o= “ =k, (EE.1)
P. -1 0 1 O0||U, -1 0 1 D,
Q.. 0 0 0 Of|\V,, 0O 0O D,
P. =kD, , Q=0 (EE.2)
(b) Element (b) [ Node 3 — Node 2]
0p=90deg.,sing, =1, cog, = 0,sid, cald = , k = Ezpb _EA
a
b
Py 0 0 0 O0][|Uy 0 0 O O0fb,
0O 1 0 -1}V 0 1 0-1|D
IQ:’3b =k, 0O 0 0 O U3ID =k, 0O 0 0 O D4 (EE-3)
2b 2b 1
Q, 0 -1 0 1]V, 0-10 1||b,
P, =0, Q, =-kD,+kD,, P, =0,Q, =kD,-Kk,D, (EE.4)

(c) Element (c) [ Node 4 — Node 3 |
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f.=0deg. sing, = 0, cod, = 1,si, cB= |, kc=E2A*:E—A
c a

P, 1 0 -1 0]fu, 1 0-1 4o

O 0 0 OV 0O 0 O 0
Qe =k, ek (EE.5)
P, -1 0 1 ol|u,, -10 1 D,
Q.. 0 0 0 0|V, 0 0 0 d(D,
P. =kD; , Qu =0 (EE.6)

(d) Element (d)

. 1 1 E,A _ EA
0. = 45 deg.,sind, = — , co¥, =— ,sid, cof, =— , k, =—4"=
c g d \/E d \/E d d d gd \/Ea
P, 1 1 -1 -1(u, 1 1 -1-13(0
Qu|_k|1 1 -1 -1]Vy|_k|1 1 -1-1j0 (EE.T)
Pol 2[-1 -1 1 1]lu,[ 2|-1-1 1 1||p
Q, -1 -1 1 1|V, -1 -1 1 1||D,

Kk k Kk Kk

|:>2d=EdD1+_2dD2, Q. =_;D1+_;D2 (EE.8)

(2) Global stiffness matrices

Since there are 4 displacements Q@F), D; throughD,4, the matrix is 4x4. Assembling all the
terms for elements (a), (b) , (c) and (d), we etdomplete matrix equation of the structure. From
the relation between extarnal forces and nodalefre¢he equiliburium equations of forces are
expressed as

R =P, + Py + Py

P, = + +
2 Q2a Q2b de (EEg)
=Py + Py
P =Qy + Qq
Substituting Egs.(EE.2), (EE.4), (EE.6) and (EEn&) above equation, we get
k k k k
R=kD,+0+ 0,450,k + & o, + X,
— kd kd — kd kd
P2_0+ka2_ka4+?D1+ED2__2D1+ kb+_2 D,-kD, (EE.10)

P3:O+ch3:ch3
I:21:_kaz"'ka4+O:_ka2+ka4

In a matrix form
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k k
k + -4 —d 0 0
Rl [PatPe  *Py) "7 2 2 %
P _ Qe + Qy + Qy — ﬁ k, + ﬁ 0 -k, D, (EE.11)
P Py + Py 2 ? >
P, Qu + Qs 0 0 'k Olp,
0 k0 k|
Considering the conditions of external forcéy € P, = Pz = 0 andP; = —P),
I K K ]
k d d O
a 2 2 Dl O
K, k, D 0
2 + < 0 - 2l =
o g+ b K D3 . (EE.12)
0 0 k Ollp,| [-P
0 K 0 k]
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